Package index
-
OHPL()
- Ordered Homogeneity Pursuit Lasso
-
FOP()
- Fisher optimal partition
-
proto()
- Extract the prototype from each variable group
-
dlc()
- Compute D, L, and C in the Fisher optimal partitions algorithm
-
OHPL-package
- OHPL: Ordered Homogeneity Pursuit Lasso for Group Variable Selection
Evaluate OHPL models
Cross-validation, prediction, performance evaluation, and generation of simulated data.
-
cv.OHPL()
- Cross-validation for Ordered Homogeneity Pursuit Lasso
-
predict(<OHPL>)
- Make predictions based on the fitted OHPL model
-
OHPL.RMSEP()
- Compute RMSEP, MAE, and Q2 for a test set
-
OHPL.sim()
- Generate simulation data for benchmarking sparse regressions (Gaussian response)