
Package index
-
OHPL() - Ordered Homogeneity Pursuit Lasso
-
FOP() - Fisher optimal partition
-
proto() - Extract the prototype from each variable group
-
dlc() - Compute D, L, and C in the Fisher optimal partitions algorithm
-
OHPL-package - OHPL: Ordered Homogeneity Pursuit Lasso for Group Variable Selection
Evaluate OHPL models
Cross-validation, prediction, performance evaluation, and generation of simulated data.
-
cv.OHPL() - Cross-validation for Ordered Homogeneity Pursuit Lasso
-
predict(<OHPL>) - Make predictions based on the fitted OHPL model
-
OHPL.RMSEP() - Compute RMSEP, MAE, and Q2 for a test set
-
OHPL.sim() - Generate simulation data for benchmarking sparse regressions (Gaussian response)