
Function reference
-
OHPL()
- Ordered Homogeneity Pursuit Lasso
-
FOP()
- Fisher Optimal Partition
-
proto()
- Extract the Prototype from Each Variable Group
-
dlc()
- Compute D, L, and C in the Fisher Optimal Partitions Algorithm
-
OHPL-package
- Ordered Homogeneity Pursuit Lasso for Group Variable Selection
Evaluate OHPL models
Functions for cross-validation, prediction, performance evaluation, and generation of simulated data.
-
cv.OHPL()
- Cross-Validation for Ordered Homogeneity Pursuit Lasso
-
predict(<OHPL>)
- Make Predictions Based on the Fitted OHPL Model
-
OHPL.RMSEP()
- Compute RMSEP, MAE, and Q2 for a Test Set
-
OHPL.sim()
- Generate Simulation Data for Benchmarking Sparse Regressions (Gaussian Response)