Make predictions on new data by an OHPL model object.
Usage
# S3 method for class 'OHPL'
predict(object, newx, ncomp = NULL, type = "response", ...)
Arguments
- object
Object of class
OHPL
fitted byOHPL()
.- newx
Predictor matrix of the new data.
- ncomp
Optimal number of components. If is
NULL
, the optimal number of components stored in the model object will be used.- type
Prediction type.
- ...
Additional parameters.
Examples
# generate simulation data
dat <- OHPL.sim(
n = 100, p = 100, rho = 0.8,
coef = rep(1, 10), snr = 3, p.train = 0.5,
seed = 1010
)
# split training and test set
x <- dat$x.tr
y <- dat$y.tr
x.test <- dat$x.te
y.test <- dat$y.te
# fit the OHPL model
fit <- OHPL(x, y, maxcomp = 3, gamma = 0.5, G = 10, type = "max")
# make predictions
y.pred <- predict(fit, x.test)
y.pred
#> [,1]
#> [1,] -1.4934986
#> [2,] -3.1985116
#> [3,] -3.9991944
#> [4,] -7.0397824
#> [5,] -8.4295953
#> [6,] 2.2299174
#> [7,] 1.1553114
#> [8,] 1.9213972
#> [9,] -3.7234000
#> [10,] 2.3534563
#> [11,] -6.0150089
#> [12,] 10.1426639
#> [13,] -8.9355458
#> [14,] 2.1876354
#> [15,] -1.4945804
#> [16,] -5.3226173
#> [17,] 4.3945984
#> [18,] -1.1679449
#> [19,] -1.9954988
#> [20,] -12.8777276
#> [21,] 7.3833293
#> [22,] 6.2708949
#> [23,] 7.2140258
#> [24,] -4.2743662
#> [25,] 1.0125648
#> [26,] 0.4475456
#> [27,] 2.0927234
#> [28,] 6.6396418
#> [29,] -11.4537155
#> [30,] 4.2973625
#> [31,] 6.5162231
#> [32,] 12.8164030
#> [33,] 1.0012365
#> [34,] 1.2443397
#> [35,] -0.9012307
#> [36,] 8.1789392
#> [37,] -1.3727632
#> [38,] -6.5154226
#> [39,] -1.0541956
#> [40,] 2.6830010
#> [41,] -0.7592643
#> [42,] 4.2746329
#> [43,] 3.3917765
#> [44,] 4.2796405
#> [45,] -0.4833004
#> [46,] 8.3971766
#> [47,] 2.0117400
#> [48,] -9.1849344
#> [49,] 5.2380432
#> [50,] -5.2196917